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ABSTRACT  

 

A tightly-coupled GNSS/INS integration algorithm has 

been developed. It implements an approach where user 

dynamics model is expressed via accelerometer and gyro 

measurements. That resulted in higher computational 

efficiency and seamless filter design. In proposed 

algorithm INS data is fed into receiver’s tracking loops to 

compensate line-of-sight dynamics and tighten their 

bandwidths. It increases the receiver’s sensitivity and 

antijam capability. From the other hand, receiver’s PVT 

(Position, Velocity, Time) output allowed to estimate and 

compensate IMU errors – that resulted in more precise 

INS navigation solution in standalone mode (during 

GNSS outages). The development and simulation results 

for the proposed algorithm with tactical-grade IMU are 

presented in this paper. 

 

INTRODUCTION  

 
It is known that the complementary properties of the 

GNSS (Global Navigation Satellite System) receiver and 

INS (Inertial Navigation System) allow achieving more 

accurate, smooth and reliable navigation output when 

both devices are properly integrated. Tightly-coupled 

integration scheme assumes that INS data are fed into the 

tracking loops of the GNSS receiver and it helps 

compensate for the dynamic component, caused by the 

user movement. This allows tightening bandwidths of the 

tracking loops, and hence increasing the sensitivity and 

antijam capability of the receiver in conditions of high 

dynamic movement. On the other hand, GNSS output 

allows estimating and compensating IMU (Inertial 

Measurement Unit) errors. This compensation leads to a 

lower growth of INS errors in standalone mode when the 

GNSS data are not available. Moreover, the compensation 

of errors of inertial sensors leads to a more accurate 

aiding of the receiver tracking loops, resulting in even 

greater gain in sensitivity and antijam capability. 

 

The objectives of the algorithm development are: a) to 

achieve the maximum antijam capability of the GNSS 

receiver by using the data from the INS, and b) to reduce 

the growth of positioning errors during GNSS outages via 

estimation and compensation of IMU errors when the data 

from the GNSS are available. The algorithm was 

considered for use in multi-purpose Inertial-Satellite 

Navigation System (ISNS) - it does not use any a priori 

information about the nature of the user movement. 

 

ALGORITHM DEVELOPMENT 

 

We shall carry out the algorithm synthesis within the 

concept of tightly-coupled integration scheme for the 

output of the GNSS receiver and outputs of 

accelerometers and gyroscopes of the IMU. 

 

To achieve high accuracy of navigation solution during 

the loss of GNSS signal the estimation of the orientation 

angles, as well as INS coordinates and velocity vector, is 

required. Besides, it is necessary to estimate not only the 

errors of navigation parameters themselves, but their root 

cause – IMU errors. This complicates the algorithm 

design and adjustment but gives an optimal result in terms 

of achieving the minimum RMS error of the navigation 

parameters. 

 

We use IMU measurements model in the form of 

 ( ), , , , ,rpy k a k rpy k a k a k= + + +a I m A b n , 

 ( ), , , , ,rpy k g k rpy k g k g k= + + +ω I m Ω b n , (1) 

where k  is the sample number in IMU’s discrete time, 

,rpy k
A  is the true specific force in IMU reference frame 

(coincident with body frame “Roll-Pitch-Yaw”, RPY), 

,rpy k
Ω  is the true absolute angular velocity vector in IMU 

frame, 
,a k

b , 
,g k

b  are the vectors of accelerometer and 

gyro biases respectively, 
,a k

m ,
,g k

m  are the matrices of 
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the axes misalignment and scale factor errors for 

accelerometers and gyros, 
,a k

n , 
,g k

n are the vectors of 

noise errors, which are assumed to be the white Gaussian 

noises without cross-correlation. The elements of 
,a k

m , 

,g k
m , 

,a k
b , 

,g k
b  are assumed to be Wiener processes 

(random walks).  

 

IMU axes of sensitivity are aligned to the physical body 

axes with some small mounting error, which is 

fundamentally impossible to eliminate. (In the analysis of 

inertial algorithms, this error is usually considered to be 

zero). We take this into account in description of 

misalignment matrices assuming the "Roll" sensor axis to 

be strictly coincident with body "Roll" axis. Then 

misalignment matrices 
,a xω≡m  will look like: 

 

11 0 0

21 22 23

31 32 33

x

x x x x

x x x

m

m m m

m m m

=m .  (2) 

This forced assumption is principal for eliminating the 

ambiguity of attitude determination.  

 

The measurements model for GNSS receiver include user 

velocity and position vectors in ECEF frame: 

 
, , ,gnss i ecef i X i
= +X X δ ,  

 
, , ,gnss i ecef i V i
= +V V n ,   (3) 

where i  is the sample number in receiver’s discrete time, 

,ecef i
X  is the true user coordinates’ vector, 

,X i
δ  is the 

position errors vector with the covariance matrix 
,X i

R ; 

,ecef i
V  is the true user velocity vector, 

,V i
n  is the vector of 

white Gaussian noises with the covariance matrix 
,V i

R ; 

,X i
R  and 

,V i
R  are assumed to be known from the 

navigation solution routine of GNSS receiver. 

 

Measurements from the IMU come with far greater rate 

than the measurements from the GNSS receiver, as it is 

shown in figure 1. This is taken into account in the 

algorithm. In simulation, we assume that the 

measurements from the gyros and accelerometers come 

with a rate of 1000 Hz, and measurements from the GNSS 

receiver come with a typical rate of 10 Hz. 

t

( )k ( 1)k +( 1)k −( 2)k −( 3)k −

( )i
 

Figure 1. Time alignment for GNSS and IMU 

measurements 

 

To estimate and compensate IMU errors as well as 

produce integrated estimates for the velocity, acceleration 

and orientation vectors we synthesize an integration filter 

based on the extended Kalman filter (EKF). The main 

objective for this EKF is to estimate IMU errors 
a
b , 

g
b , 

a
m , 

g
m . Their subsequent compensation will result in 

more accurate standalone solution. The only way to 

estimate these errors is to utilize an additional data source 

- the GNSS receiver. The receiver provides measurements 

of the user coordinates and velocities, which may be 

included in the state vector. In common sense, the 

measurements of the coordinates are redundant, since all 

the data about the user dynamic movement is already laid 

in the velocity vector. Therefore, the user coordinates can 

be excluded from the EKF state vector - they can be 

estimated in a separate block. Also, it is necessary to 

include user attitude parameters (that reflects mutual 

orientation of IMU RPY frame and the ECEF frame) in 

the state vector. The complete EKF state vector is 

represented as follows: 

( ) ( ) ( ) ( ) ( ) ( )
T

TT T T T Tecef

ecef rpy g g a a=x V q b m b m
r r

,

 (4) 

where 
ecef

rpy
q  is the quaternion representing the orientation 

of RPY frame within the ECEF frame; 
g

m
r

 are 
g

m matrix 

elements vectorized rowwise. The total number of 

elements in state vector x  is 27. 

 

A distinctive feature of the approach used in EKF 

synthesis is that the dynamic equations for evolution of 
ecef

rpy
q  and 

ecef
V  components were written through 

accelerometers and gyros’ measurements. Actually, it led 

to the fact that the step of Kalman filter extrapolation 

implements the step of inertial navigation algorithm. The 

dynamics of 
ecef

rpy
q quaternion can be represented in a 

discrete-time form as [1] 

, , 1 ,

ecef ecef

rpy k E rpy k RPY k

∗
−= ⊗ ⊗q ∆ q ∆ , (5) 

where ⊗  is the operation of quaternion multiplication; 

E

∗∆  is the conjugate quaternion representing small 

rotation of Earth during 
1k k

t t− K  interval; 
,RPY k

∆  is the 

quaternion of user rotation in inertial space during 

1k k
t t− K interval. 

( ) ( )
T

cos / 2 0 0 sin / 2E E ET T
∗ = ω − ω∆ , (6) 

E
ω = 7.292115E-5 rad/s – Earth’s rotation rate. 

( ),RPY k k
=∆ Q ρ , ( ), , 1

2
k rpy k rpy k

T
−≈ +ρ Ω Ω , (7) 

where ( )kQ ρ  is the function that transforms rotation 

vector 
k
ρ  to the quaternion [1,2]. 

 

With the help of gyroscope measurement model (1) 
rpy

Ω  

can be expressed in (7) through the measurements 
,rpy k

ω  

and their errors: 

( ) ( )

( ) ( )

1

, , , , ,

, 1 , , 1 , 1 ,

,

1
,

2

rpy k g k rpy k g k g k

k g k rpy k rpy k g k kT

−

− − − ρ

= + − −

 ≈ ⋅ − + − +  

Ω I m ω b n

ρ I m ω ω b n

 (8) 
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where ( ), , , 1
2

k g k g k

T
ρ −≈ − +n n n . The expressions for 

k
ρ  

in (8) are obtained under the assumption that 

, , 1g k g k−≈m m , 
, , 1g k g k−≈b b , ( ) ( )1

g g

−
+ ≈ −I m I m . 

Vector of noise 
,kρn  can be neglected for all types of 

gyroscopes (FOG, RLG, mechanical), except for the 

micromechanical (MEMS) ones. The expressions (5) - (8) 

represent the dynamic model for 
ecef

rpy
q . They also 

determine the attitude reckoning algorithm in a strapdown 

INS. 

 

The dynamic model for 
ecef
V  follows from the general 

navigation equation [2] 

( )
( )( ) ( ) ( ) ( )( )

d
2

d

ecef ecef

rpy rpy EX ecef ecef

t
t t t t

t
= ⋅ − +

V
C q A Ω V g X ,

      (9) 

where ( )rpy
tA  is the specific force in RPY frame; 

( )( )ecef

rpy tC q  is the transition matrix from the RPY to the 

ECEF, expressed through the components of the 

quaternion
ecef

rpy
q  [1]; ( )( )ecef tg X  is the gravitational 

acceleration in ECEF (includes the centripetal 

acceleration due to the Earth rotation);  

0 0

0 0

0 0 0

E

EX E

−ω

= ωΩ . 

Having performed a discrete numerical integration of eq. 

(9) with ( )( ), , , , ,rpy k a k rpy k a k a k= − − −A I m a b n  (from (1)) 

we can get a dynamic model of 
ecef
V  for EKF synthesis in 

the form:  

( ) ( )

( ) ( )
( )( )
( )( )

, , 1 ,

, , , 1 , 1 ,

, , 1 , , 1

, 1 , 1 , 1 , 1

2

,
2

,

,

ecef k EX ecef k ecef k

ecef ecef

rpy k rpy k rpy k rpy k DV k

rpy k a k rpy k a k

rpy k a k rpy k a k

T T

T

−

− −

− −

− − − −

= − + +

 + ⋅ + ⋅ + 

= − −

= − −

V I Ω V g X

C q A C q A n

A I m a b

A I m a b

)

% %

%

%

 (10) 

where 
,rpy k

A% , 
, 1rpy k−A%  are the compensated measurements 

of the accelerometers; 
,DV k

n  is the vector of noise, 

reflecting the sum of model inaccuracy with the noise of 

the accelerometers. 
,DV k

n  is assumed to be white 

Gaussian noise with non-stationary covariance matrix 

,DV k
D . The elements of 

,DV k
D  matrix are very small, and 

in some cases they can be considered as zeros. 

 

Gravity vector ( ),ecef kg X
)

 is approximated by the known 

functionality [3]. The 
,ecef k

X
)

 estimates are formed in 

special way to eliminate the effect of INS’ vertical 

channel instability. 

 

EKF implementation consists of the following steps. 

 

1. Initialization of the state vector and its covariance 
matrix. 

( ) ( )( )
T

TT

0 , 0 0 0
ˆ , , 0 0

ecef

gnss i rpy R P Y=x V q K , (11) 

where 
,gnss i

V  is the current velocity vector measured by 

the GNSS receiver, ( )0 0 0
, ,

ecef

rpy
R P Yq  is the attitude 

quaternion which can be obtained as a result of initial INS 

alignment (gyrocompassing) procedure. The initial value 

for state vector covariance matrix 
0
E  is set in accordance 

with initial uncertainties of the state vector elements. 

 

2. Prediction of the state vector. 
The predicted estimate of the state vector can be written 

in general form as: ( )1ˆ
k k−=x f x% , where ( )f  is a 

known functionality defined by the dynamic model which 

includes eq. (5)-(8), (10). We denote the a-posteriori 

estimate of any parameter with "^" symbol and the 

predicted estimate of this parameter with "~" symbol. In 

particular, the 
ecef
V  subvector is predicted in accordance 

with eq. (10), the 
ecef

rpy
q  subvector - in accordance with eq. 

(5)-(8), and other components - in accordance with the 

dynamic model of random walk. 

 

3. Prediction of the covariance matrix. 
The dynamic model of the EKF state vector can be 

written in the form of a Markov process 

( ) ( )1 1k k k k− −= + ⋅x f x G x ξ ,    (12) 

where 
k
ξ  is the vector of discrete white Gaussian noises 

with identity covariance matrix. Therefore the EKF 

covariance matrix is predicted as 

( ) ( )
T

1 1

1

1 1

ˆ ˆ
k k

k k

k k

− −
−

− −

∂ ∂ 
= + 

∂ ∂ 

f x f x
E E P

x x
% , (13) 

where ( ) ( )Tk k
≡ ⋅P G x G x% %  - a constant matrix in our 

case.  

 

4. Estimation. 

If the reliable measurements (
,gnss k

V , 
,gnss k

X ) from the 

GNSS receiver are available, the EKF estimation step is 

performed. It can be described by the equations 

( )
( )

( )

1
T T

,

, ,

,

,

ˆ ,

k k k V k

k k k

k k k gnss k ecef k

−
= ⋅ ⋅ ⋅ ⋅ +

= − ⋅ ⋅

= + ⋅ −

K E H H E H R

E I K H E

x x K V V

% %

%

%%

 (14) 

where 
3 3 24×=H I 0 , 

k
K  is the matrix of EKF 

coefficients. 

 

Note that heavy operation of matrix inversion in (14) is 

performed only in sparse moments of GNSS 

measurements availability. Moreover, the matrix to 
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inverse have only 3x3 dimension and could be inverted 

analytically. Therefore, despite the large EKF size (27 

states), it is very effective computationally. 

 

GNSS measurements are taken into account only at the 

EKF estimation step. At this very moment the estimation 

of IMU sensor errors takes place as well. In the absence 

of reliable measurements from the GNSS receiver there is 

no EKF estimation steps, and EKF is operating in the 

prediction mode only: 

ˆ
k k
=x x% ,         

k k
=E E% . (15) 

 

EKF prediction step is nothing but the algorithm of 

reckoning in standalone INS. Therefore, the transition 
from the integrated mode to the standalone reckoning 

mode in the proposed ISNS is performed seamlessly and 
transparently. 
 

The estimation of coordinates together with the integrity 

monitoring of GNSS measurements is implemented in a 

separate block. Estimation of the coordinates is performed 

by the simple initialization of INS position from the 

GNSS position. Integrity monitoring is based on the 

analysis of the position and velocity measurements from 

GNSS and their comparison with the predicted estimates 

of these parameters from integration filter. We shall not 

consider this part of the tightly-coupled algorithm because 

it is out of scope of this paper. 

 

EKF, the position estimation block and the integrity 

monitoring block  construct an integration filter for 

system’s secondary data processing unit. The structure of 

this unit is shown in fig. 2. 

 

In
te
g
ri
ty
 c
h
e
c
k
 1
0
 H
z

Integrators

1 kHz

State

Extrapolation

1 kHz

27 states total

State

Update

10 Hz

Xecef

control

initialization

,rpy k
a

,rpy kω

,a kb

,a km
,g k

b

,g k
m

,gnss iX

,gnss i
V

,
ˆ
ecef k
V

,
ˆ
ecef kV

,
ˆ ecef
rpy k
q

,
ˆ
ecef k
A

,
ˆ
ecef k
X

( ) ( ) ( ) ( ) ( ) ( )(3) (4) (3) (7) (3) (7)ecef

ecef rpy g g a aV q b m b m
r r

( ),
ˆ ecef
rpy kC q

 
Figure 2.  Integration filter internals 

 

The user acceleration in ECEF is evaluated from the 

compensated accelerometer outputs with the use of the 

velocity and attitude estimates from EKF: 

( ) ( ), , , , ,
ˆ 2

ecef

ecef k rpy k rpy k EX ecef k ecef k= ⋅ − +A C q A Ω V g X
)

% %% , (16) 

where 
,rpy k

A%  is calculated according to eq. (10).  

 

Acceleration vector 
,

ˆ
ecef k
A  is used to calculate the line-of-

sight (LOS) accelerations to aid the GNSS receiver 

tracking loops. The LOS acceleration is the second 

derivative of the distance between the satellite and the 

user. The algorithm for LOS accelerations calculation is 

given below. 

, ,( )ecef k sat k

k

k
D

−
=
X X

R

)

, , ,k ecef k sat kD = −X X
)

, (17) 

T

, ,
ˆ( - )

k ecef k sat k k
Vaid = ⋅V V R , (18) 

( )
2

2
T , ,

, ,

ˆ -
ˆ -

ecef k sat k
k

k ecef k sat k k

k k

Vaid
Aaid

D D
= ⋅ − +

V V
A a R ,

 (19) 

where 
, , ,
,  ,  

sat k sat k sat k
X V a  are the coordinates, velocity 

and acceleration vectors of the given satellite; 
k

R  is the 

vector of the unit length pointing to satellite; 
k

D  is the 

distance to the given satellite; 
k

Vaid , 
k

Aaid  are the 

calculated values of LOS velocity and LOS acceleration, 

respectively. The issues of primary data processing in the 

GNSS receiver with the aiding of tracking loops by LOS 

acceleration are widely highlighted in the references [1], 

[5], [6], [7]. This system applies the well-known methods 

for tracking loops aiding, on which we are not going to 

focus. 

 

The block diagram for ISNS implementing the proposed 

integration algorithm is shown in figure 3. 

RF 
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corr. channel
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track. loops
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+
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a
v
ig
a
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o
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Figure 3. Tightly coupled ISNS design 

 

This scheme is resulted from the tightly-coupled 

approach. One of its useful advantages is a small number 

of links between GNSS receiver and INS. It is supposed 

that main navigation computer (running integration filter 

software) is placed in INS unit. Such a design simplifies 

the modernization of existing INSes and it is good for 
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creating the new ones. 

 

SIMULATION RESULTS 

 

To evaluate the characteristics of precision, convergence 

and antijam capability of the proposed algorithm the 

simulation has been carried out. Simulation model 

included tactical grade IMU with performance 

characteristics presented in table 1.  

 

Table 1. IMU characteristics 

Gyros 

Bias  (1σ) 0.1 °/h 

Accuracy of scale (1σ) 10
-4
 

Misalignment of measurement axes 

(1σ) 
5 ang. min. 

Noise component (1σ) 1.8E-7 rad/s 

Accelerometers 

Bias  (1σ) 10
-4
 g 

Accuracy of scale (1σ) 10
-4
 

Misalignment of measurement axes 

(1σ) 
5 ang. min. 

Noise component (1σ) 1.72E-5 m/s
2
 

 

Antijam capability of the GNSS receiver was estimated 

under operation upon new L3OC GLONASS signals with 

20.46 MHz bandwidth. L3OC signals are very similar to 

GPS L5 ones. It’s very important that L3OC signal, as 

well as L5, has pilot component. Only coherent mode was 

considered. The jammer modeled as a band-limited 

Gaussian noise with flat spectrum within the L3OC band. 

 

It is known that the dynamics of the reference oscillator 

drift dramatically affects antijam capability. Oscillator’s 

frequency drift was modeled by random-walk process, 

according to [6], with the parameter 
ОГ
S =11 rad

2
/s

3
 that 

roughly corresponds to Allan deviation of 1х10
-10
 at τ = 1 

s.  For test purposes, the dynamics of user movement was 

modeled by a sinusoidal acceleration of 50 g (max) and 

the sinusoidal jerk 50 g/s (max). 

 

The simulation results are shown in table 2. They are 

related to different modes of ISNS operation: 

- integrated mode after EKF settle, that means that 

initial transient process in EKF is finished and 

GNSS measurements are always available  

(normal ISNS operation in the most of time); 

- GNSS only mode, that means that only GNSS 

receiver is considered - no integration or aiding  

applied; 

- INS only mode, that means that no GNSS data 

available from the startup moment, whereas 

initial alignment of INS has been done with zero 

errors; 

- standalone mode, that means that GNSS data are 

not available due to outage, but the initial 

transient process in EKF is finished before the 

outage has begun, and IMU sensor errors are 

being compensated. 

 

Table 2. Simulation results. 

Mode 

Integrated 

mode after 

EKF settle 

GNSS 

only 
INS only 

Standalone  

(during GNSS 

outage) 

Positioning error (± 2 σσσσ), m 0.15* 0.7* 
800 

after 10 min 

25  

after 10 min 

Velocity error (± 2 σσσσ), m/s 
 

0.004 0.8 
5 

after 10 min 

0.15 

after 10 min 

Attitude error (± 2 σσσσ), ang. min. 
 

0.4 N/A 
4 

after 10 min 

0.5 

after 10 min 

Antijam capability of L3OC signal  

tracking: (J/S), dB 
67…70 50…52 N/A N/A 

* Only noise errors  (no multipath, ionosphere, ephemeris etc. errors considered). 

 

 

 

 

 

 

The convergence time of EKF is 250-300 seconds. After 

this time the velocity and attitude errors come to the 

constant level. This is depicted in figure 4, which shows 

velocity errors during initial transient process in EKF.  

 

 
Figure 4. Velocity errors in the integration mode 
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Antijam capability (J/S) of GNSS L3OC signal tracking 

mode in the proposed ISNS is 67 ... 70 dB, that is 17 dB 

higher than the antijam capability of the GNSS receiver 

without aiding from IMU/integration algorithm.  

 

The simulation showed that the algorithm effectively 

estimates and compensates IMU sensor errors (biases, 

scales, and misalignments) by using data from GNSS 

receiver. This is illustrated in figure 5. 

 
Figure 5. Gyro bias estimation errors 

 

Fig. 5 shows that the gyro bias estimation errors are 

dramatically reduced (through the transition process) from 

the initial value of -0.4х10
-6
 rad/s to ±0.05х10

-6
 rad/s. It 

explains why positioning error in standalone mode, where 

IMU errors are compensated, grows much slower than 

that in INS only mode,  where IMU errors are not 

compensated. 

 

CONCLUSION  

 

The algorithm is designed to be implemented in the multi-

purpose INS consisting of three separate components:  

GNSS receiver, IMU and the navigation computer. The 

separation of the algorithm into several parts makes it 

easier to implement it in a target device. Thus, the 

algorithm can be used in a large number of integrated 

GNSS/INS systems for aviation and military applications, 

as well as in low-cost civil systems based on MEMS 

sensors. 

 

Note that the algorithm did not use any a priori 

information specific to the particular user. That is, any 

inherent dependences, binding the specific forces and 

angular velocities with the navigation parameters of the 

object are absent. This ensures that the algorithm does not 

depend on the specific movement characteristics of the 

target object. 

 

Integration part of the algorithm is based on the extended 

Kalman filter, which state vector includes the velocity of 

the user, the user orientation in quaternion form and IMU 

sensor errors (27 elements total). A distinctive feature of 

this EKF is that the user dynamics model is expressed 

through the measurements of accelerometers and 

gyroscopes. This leads to the ‘seamless’ structure of the 

filter, which implements the inertial navigation algorithm 

during prediction (extrapolation) step of the EKF. 

Correction (estimation) step of the filter takes place only 

when GNSS receiver measurements are available. This 

approach ensures reliable operation of the algorithm 

during GNSS outages, a good estimate of EKF 

covariances and convenient software implementation of 

the algorithm. 

 

EKF state vector includes the most popular IMU errors: 

the biases, scale factors and axes misalignments. This 

allows to use any type of IMU - from the navigation grade 

IMU to the low-grade MEMS-based one. The changing of 

IMU type requires only tuning up the constant parameters 

of the filter. 

 

To avoid the problem of uncertain orientation caused by 

the mutual misalignment of accelerometers’, gyroscopes’ 

and body RPY axes the method of the reference axis is  

introduced. The method assumes that the one of the 

accelerometer axis and one of the gyro axis coincide with 

the corresponding body axis. Thus, the matrices of the 

axes misalignment are reduced from 9 to 7 elements, 

which reduces the size of state vector and hence the 

computational complexity. 

 

The tracking loops aiding part of the algorithm uses the 

estimate of the acceleration vector in the ECEF frame 

from the output of the integration filter. Under extremely 

high user dynamics (max. jerk 50 g/s, max. acceleration 

50g) the aiding allows to tighten the PLL bandwidth from 

42 Hz to 0.7-1 Hz, which leads to an increase of antijam 

capability by 17 dB. (Of course, the lower user dynamics 

the lower will be antijam capability gain). 

 

In general, the simulation results show that the algorithm 

allows achieving more precise, continuous and reliable 

navigation solution that is not available for either INS or 

GNSS receiver alone. This was made possible by the 

effective estimation and compensation of IMU sensor 

errors by using the information from the GNSS receiver. 
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