Моделирование коррелированных гауссовых СВ — различия между версиями
Korogodin (обсуждение | вклад) |
Korogodin (обсуждение | вклад) |
||
Строка 47: | Строка 47: | ||
Шумы корреляционных сумм <math>n_{Ip}</math>, <math>n_{Ie}</math>, <math>n_{Il}</math> получены сворачиванием входного шума <math>n</math> с тремя опорными сигналами. Таким образом, выполняется второе необходимое и достаточное условие того, что тройка <math>n_{Ip}</math>, <math>n_{Ie}</math>, <math>n_{Il}</math> имеет многомерное нормальное распределение (если выборку <math>n</math> обозначить как <math>\mathbf{Z}</math>, опорные сигналы записать в виде трех строк матрицы <math>\mathbf{A}</math>, <math>\mathbf{\mu}</math> - вектор-столбец из трех нулей) | Шумы корреляционных сумм <math>n_{Ip}</math>, <math>n_{Ie}</math>, <math>n_{Il}</math> получены сворачиванием входного шума <math>n</math> с тремя опорными сигналами. Таким образом, выполняется второе необходимое и достаточное условие того, что тройка <math>n_{Ip}</math>, <math>n_{Ie}</math>, <math>n_{Il}</math> имеет многомерное нормальное распределение (если выборку <math>n</math> обозначить как <math>\mathbf{Z}</math>, опорные сигналы записать в виде трех строк матрицы <math>\mathbf{A}</math>, <math>\mathbf{\mu}</math> - вектор-столбец из трех нулей) | ||
− | Итого, <math>n_{Ip} | + | Итого, компоненты <math>D = \left| {\begin{array}{*{20}{c}} |
+ | n_{Ip}&n_{Ie}&n_{Il}\\ | ||
+ | \end{array}} \right|^T</math> образуют многомерную нормальную СВ с нулевым мат. ожиданием и ковариационной матрицей: | ||
<math>D = \left| {\begin{array}{*{20}{c}} | <math>D = \left| {\begin{array}{*{20}{c}} | ||
− | + | \sigma_{IQ}^2&\rho \left( \frac{\Delta \tau}{2} \right) \sigma_{IQ}^2&\rho \left( \frac{\Delta \tau}{2} \right) \sigma_{IQ}^2\\ | |
− | + | \rho \left( \frac{\Delta \tau}{2} \right) \sigma_{IQ}^2&\sigma_{IQ}^2&\rho \left( \Delta \tau \right) \sigma_{IQ}^2\\ | |
− | + | \rho \left( \frac{\Delta \tau}{2} \right) \sigma_{IQ}^2&\rho \left( \Delta \tau \right) \sigma_{IQ}^2&\sigma_{IQ}^2 | |
\end{array}} \right|</math> | \end{array}} \right|</math> | ||
[[Category:ММ РУиС (дисциплина)]] | [[Category:ММ РУиС (дисциплина)]] |
Версия 11:02, 22 августа 2013
При моделировании следящих систем НАП, а так же сигналов многоантенных НАП, возникает задача создания нормальных случайных величин с заданным коэффициентом корреляции.
Рассмотрим решение данной задачи на примере модели шумов статистического эквивалента корреляционных сумм , и .
Статистический эквивалент коррелятора
Статистический эквивалент коррелятора синфазных корреляционных сумм в отсутствии помех можно описать выражениями:
которые для полной картины необходимо дополнить определениями , и т.д., а так же описанием шумов , , .
Математические ожидания СВ , , равны нулю, их дисперсии есть
,
где - дисперсия шумов на выходе АЦП, - число суммируемых отсчетов в корреляторе, эти величины считаются известными.
Нетрудно рассчитать попарные взаимные дисперсии:
,
,
Примечание. Задача формирования шумов квадратурных сумм - абсолютно аналогична и независима, т.к. шумы между I и Q компонентами не коррелируют.
Многомерная нормальная СВ или вектор случайных величин?
При синтезе радиотехнических систем часто используются модели, оперирующие с многомерными нормальными случайными величинами. Определение из Википедии:
Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
- Произвольная линейная комбинация компонентов вектора имеет нормальное распределение или является константой.
- Существует вектор независимых стандартных нормальных случайных величин , вещественный вектор и матрица размерности , такие что:
- .
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что характеристическая функция вектора имеет вид:
- .
Из первого условия следует, что каждая из компонент нормальной векторной СВ имеет нормальное распределение (для компоненты это вытекает при и остальных коэффициентах комбинации, равных 0). Отсюда часто возникает иллюзия, что нормальность распределений компонент влечет нормальность совместного распределения. Этот тезис не выполняется, на контрпример можно взглянуть тут.
Шумы корреляционных сумм , , получены сворачиванием входного шума с тремя опорными сигналами. Таким образом, выполняется второе необходимое и достаточное условие того, что тройка , , имеет многомерное нормальное распределение (если выборку обозначить как , опорные сигналы записать в виде трех строк матрицы , - вектор-столбец из трех нулей)
Итого, компоненты образуют многомерную нормальную СВ с нулевым мат. ожиданием и ковариационной матрицей: