Дискриминатор частоты с временным сдвигом квадратурных компонент — различия между версиями
Dneprov (обсуждение | вклад) |
Dneprov (обсуждение | вклад) (→Сравнение с другими ЧД) |
||
(не показаны 23 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
− | + | {{TOCright}} | |
− | + | ||
− | <math>u_{D \omega, k} = I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})Q_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1}) - Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})I_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1})</math>, | + | Дискриминатор частоты '''с временным сдвигом квадратурных компонент''' известен в англоязычной литературе как cross-product дискриминатор<ref name="NavipediaFLL">http://www.navipedia.net/index.php/Frequency_Lock_Loop_(FLL)</ref>. |
+ | |||
+ | Дискриминатор использует отсчеты коррелятора с текущего и предыдущего такта работы: <br /> | ||
+ | |||
+ | :<math>u_{D \omega, k} = I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})Q_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1}) - Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})I_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1})</math>, | ||
где <br /> | где <br /> | ||
− | <math>I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | + | :<math>I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> |
− | <math>Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | + | :<math>Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> |
− | <math>I_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,{k-1}}) = \sum_{l=1}^{L}y(t_{k-1,l})h_{c}(t_{k-1,l}-\widetilde{\tau}_{k-1})\mbox{cos}(\omega_0t_{k-1,l}+\widetilde{\omega}_{d\,k-1}(l-1)T_d))</math>,<br /> | + | :<math>I_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,{k-1}}) = \sum_{l=1}^{L}y(t_{k-1,l})h_{c}(t_{k-1,l}-\widetilde{\tau}_{k-1})\mbox{cos}(\omega_0t_{k-1,l}+\widetilde{\omega}_{d\,k-1}(l-1)T_d))</math>,<br /> |
− | <math>Q_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1}) = \sum_{l=1}^{L}y(t_{k-1,l})h_{c}(t_{k-1,l}-\widetilde{\tau}_{k-1})\mbox{sin}(\omega_0t_{k-1,l}+\widetilde{\omega}_{d\,k-1}(l-1)T_d))</math>.<br /> | + | :<math>Q_{k-1}(\widetilde{\tau}_{k-1},\widetilde{\omega}_{d\,k-1}) = \sum_{l=1}^{L}y(t_{k-1,l})h_{c}(t_{k-1,l}-\widetilde{\tau}_{k-1})\mbox{sin}(\omega_0t_{k-1,l}+\widetilde{\omega}_{d\,k-1}(l-1)T_d))</math>.<br /> |
== Особенности работы == | == Особенности работы == | ||
[[Файл:20151028_Про перекрытие.png|мини|справа|600пкс|Варианты работы дискриминатора]] | [[Файл:20151028_Про перекрытие.png|мини|справа|600пкс|Варианты работы дискриминатора]] | ||
− | |||
− | + | Возможны различные реализация дискриминатора. На рисунке представлено два варианта, условно названных "Перекрытие" и "Перекрытие отсутствует". Поясним рисунок. | |
− | <math>u_{D\omega,k} = S_{D}(\omega_k - \widetilde{\omega_k}) + n_{D,k}</math>, где <math>n_{D,k} \sim N(0, D_\eta)</math> | + | Пусть в некоторый момент времени <math>t_{k}</math> доступны отсчеты с выхода коррелятора <math>I_k, Q_k</math> и отсчеты из предыдущей эпохи <math>I_{k-1}, Q_{k-1}</math>. На их основе можно сформировать отсчет дискриминатора <math>u_{D\omega,k}</math>. Далее возможны варианты. |
+ | |||
+ | В случае, если работа идет с "перекрытием", следующий отсчет дискриминатора <math>u_{D\omega,k+1}</math> будет сформирован из новых отсчетов коррелятора <math>I_{k+1}, Q_{k+1}</math> и уже использованных в предыдущем шаге <math>I_k, Q_k</math>. Таким образом, каждое вычисление отсчета дискриминатора использует отсчеты коррелятора, уже использованные в расчете предыдущего значения дискриминатора. Поэтому шум выхода дискриминатора в данном случае оказывается коррелированным, а его СПМ отличается от СПМ белого шума. | ||
+ | |||
+ | Если дискриминатор работает без "перекрытия", для расчета соседних значений выхода дискриминатора каждый раз используются разные корреляционные суммы. В этом случае, шум дискриминатора будет некорреллированным с равномерной СПМ. Однако, темп работы такого дискриминатора ниже в 2 раза: ему нужно "дождаться" следующей пары отсчетов. | ||
+ | |||
+ | Для дискриминатора "с перекрытием" использование статистического эквивалента вида | ||
+ | |||
+ | :<math>u_{D\omega,k} = S_{D}(\omega_k - \widetilde{\omega_k}) + n_{D,k}</math>, где <math>n_{D,k} \sim N(0, D_\eta)</math> | ||
+ | |||
+ | при моделировании следящих систем недопустимо, т.к. он не отражает корреляционных свойств. Следует воспользоваться статистическими эквивалентами коррелятора. | ||
− | |||
<br clear="all" /> | <br clear="all" /> | ||
Строка 26: | Строка 37: | ||
Сделано допущение, что <math>\varepsilon_{\omega,k-1} = \varepsilon_{\omega,k}</math>. | Сделано допущение, что <math>\varepsilon_{\omega,k-1} = \varepsilon_{\omega,k}</math>. | ||
− | <math>U(\varepsilon_\omega) = A_{IQ}^2\rho(\varepsilon_{\tau,k})\rho(\varepsilon_{\tau,k-1})\mbox{sinc}^2(\varepsilon_{\omega,k-1}T/2)\mbox{sin}(\varepsilon_{\omega,k-1}T),</math> | + | :<math>U(\varepsilon_\omega) = A_{IQ}^2\rho(\varepsilon_{\tau,k})\rho(\varepsilon_{\tau,k-1})\mbox{sinc}^2(\varepsilon_{\omega,k-1}T/2)\mbox{sin}(\varepsilon_{\omega,k-1}T),</math> |
где <math>A_{IQ} = \frac{AL}{2}</math>, <math>A</math> - амплитуда сигнала <math>y(t_{k,l})</math>, <math>L</math> - количество отчетов, накапливаемых в корреляторе, <math>\varepsilon</math> - разность истинного и опорного параметров. | где <math>A_{IQ} = \frac{AL}{2}</math>, <math>A</math> - амплитуда сигнала <math>y(t_{k,l})</math>, <math>L</math> - количество отчетов, накапливаемых в корреляторе, <math>\varepsilon</math> - разность истинного и опорного параметров. | ||
− | Крутизна дискриминационной характеристики <math>S_D = A_{IQ}^2T</math>. | + | Крутизна дискриминационной характеристики при нулевой расстройке по частоте: <math>S_D = A_{IQ}^2T</math>. |
В модели задержка сигнала полагалась известной: <math>\rho(\varepsilon_{\tau,k}), \rho(\varepsilon_{\tau,k-1}) = 1</math>. | В модели задержка сигнала полагалась известной: <math>\rho(\varepsilon_{\tau,k}), \rho(\varepsilon_{\tau,k-1}) = 1</math>. | ||
− | |||
− | |||
Дискриминационная характеристика при различных временах накопления: | Дискриминационная характеристика при различных временах накопления: | ||
Строка 48: | Строка 57: | ||
[[File:20132504 CKO(q,T) ChD.png|300x300px|frame|center|]] <br /> | [[File:20132504 CKO(q,T) ChD.png|300x300px|frame|center|]] <br /> | ||
− | Дисперсия | + | Дисперсия шума эквивалентного наблюдения частоты, т.е. шума с выхода дискриминатора, пересчитанного '''к его входу''' при нулевой расстройке по частоте: <br /> |
+ | |||
+ | :<math>D_{\widetilde{\eta}_\omega} = \frac{1}{q_{c/n_0}T^3}(1+\frac{1}{2q_{c/n_0}T}).</math> | ||
+ | |||
+ | === Сравнение с другими ЧД === | ||
+ | |||
+ | Интересно сравнить дисперсию шумов по входу для различных дискриминаторов: | ||
+ | |||
+ | * Собственно дисперсия шума на входе рассматриваемого в этой статье cross дискриминатора. Обозначим ее как <math>D_1</math>: | ||
+ | |||
+ | :<math> D_1 = D_{\widetilde{\eta}_\omega} = \frac{1}{q_{c/n_0}T_1^3}(1+\frac{1}{2q_{c/n_0}T_1}).</math> | ||
+ | |||
+ | * Дисперсия шума на входе оптимального при низком отношении сигнал/шум частотного дискриминатора (тот, который <math>I_kI'_k+Q_kQ'_k</math>) <ref name="OptimalFLL">[[Публикация:Корогодин 2013 Потенциальные характеристики оценивания частоты в некогерентном приемнике]]</ref>, <ref name="KorPhD">[[Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов]]</ref>. Обозначим ее как <math>D_2</math>: | ||
+ | |||
+ | :<math> D_2 = D_{\widetilde{\eta}_\omega} = \frac{6}{q_{c/n_0}T_2^3}(1+\frac{1}{q_{c/n_0}T_2}).</math> | ||
+ | |||
+ | Пусть cross дискриминатор реализован по схеме без перекрытия, тогда <math>T_2 = 2T_1</math> и | ||
+ | |||
+ | :<math>\frac{D_2}{D_1} = \frac{6}{8}</math>, | ||
+ | |||
+ | или для СКО: | ||
+ | |||
+ | :<math>\sigma_2 = 0.866*\sigma_1</math>. | ||
+ | |||
+ | Дискриминатор cross проигрывает <math>I_kI'_k+Q_kQ'_k</math> около 15% по СКО во всем диапазоне с/ш. На рисунке ниже приведен график зависимости СКО эквивалентных шумов представленных ЧД от отношения сигнал/шум <math>q_{c/n0}</math>. | ||
+ | |||
+ | [[File:20151029_Сравнение СКО.png|центр|500px]] | ||
+ | |||
+ | |||
+ | Далее построены нормированные на крутизну дискриминационные характеристики сравниваемых дискриминаторов. Как и при сравнении дисперсий шума, полагаем <math>T_2 = 2T_1</math>. | ||
+ | |||
+ | [[File:20151103_FreqDiskrCompare.png|центр|500px]] | ||
− | |||
− | + | Из приведенного рисунка следует вывод, что апертура обоих частотных дискриминаторов равна <br /> | |
+ | <math>A_\omega=\frac{2}{T_u}</math>.<br /> | ||
+ | <math>T_u</math> - темп работы дискриминатора. Ранее дискриминаторы сравнивались при условии <math>T_u = T_2 = 2T_1</math>, т.е. при одинаковом темпе работы. При анализе "cross" дискриминатора нужно помнить, что <math>T_1</math> в формулах его характеристик - это время когерентного накопления в корреляторе, а темп работы самого дискриминатора по схеме без перекрытия <math>T_u = 2T_1</math>. | ||
== Листинг модели == | == Листинг модели == | ||
Строка 185: | Строка 226: | ||
|hidden = yes | |hidden = yes | ||
}} | }} | ||
+ | |||
+ | |||
+ | == Ссылки == | ||
+ | <references/> | ||
[[Категория:Дискриминаторы]] | [[Категория:Дискриминаторы]] | ||
[[Категория:Оценивание частоты]] | [[Категория:Оценивание частоты]] |
Текущая версия на 15:22, 3 ноября 2015
|
Дискриминатор частоты с временным сдвигом квадратурных компонент известен в англоязычной литературе как cross-product дискриминатор[1].
Дискриминатор использует отсчеты коррелятора с текущего и предыдущего такта работы:
,
где
,
,
,
.
[править] Особенности работы
Возможны различные реализация дискриминатора. На рисунке представлено два варианта, условно названных "Перекрытие" и "Перекрытие отсутствует". Поясним рисунок.
Пусть в некоторый момент времени доступны отсчеты с выхода коррелятора
и отсчеты из предыдущей эпохи
. На их основе можно сформировать отсчет дискриминатора
. Далее возможны варианты.
В случае, если работа идет с "перекрытием", следующий отсчет дискриминатора будет сформирован из новых отсчетов коррелятора
и уже использованных в предыдущем шаге
. Таким образом, каждое вычисление отсчета дискриминатора использует отсчеты коррелятора, уже использованные в расчете предыдущего значения дискриминатора. Поэтому шум выхода дискриминатора в данном случае оказывается коррелированным, а его СПМ отличается от СПМ белого шума.
Если дискриминатор работает без "перекрытия", для расчета соседних значений выхода дискриминатора каждый раз используются разные корреляционные суммы. В этом случае, шум дискриминатора будет некорреллированным с равномерной СПМ. Однако, темп работы такого дискриминатора ниже в 2 раза: ему нужно "дождаться" следующей пары отсчетов.
Для дискриминатора "с перекрытием" использование статистического эквивалента вида
, где
при моделировании следящих систем недопустимо, т.к. он не отражает корреляционных свойств. Следует воспользоваться статистическими эквивалентами коррелятора.
[править] Дискриминационная характеристика
Сделано допущение, что .
где ,
- амплитуда сигнала
,
- количество отчетов, накапливаемых в корреляторе,
- разность истинного и опорного параметров.
Крутизна дискриминационной характеристики при нулевой расстройке по частоте: .
В модели задержка сигнала полагалась известной: .
Дискриминационная характеристика при различных временах накопления:
[править] Флуктуационная характеристика
Получены зависимости СКО шума на выходе дискриминатора от для различных времен накопления. Теоретические кривые пунктирной линией.
Дисперсия шума эквивалентного наблюдения частоты, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке по частоте:
[править] Сравнение с другими ЧД
Интересно сравнить дисперсию шумов по входу для различных дискриминаторов:
- Собственно дисперсия шума на входе рассматриваемого в этой статье cross дискриминатора. Обозначим ее как
:
- Дисперсия шума на входе оптимального при низком отношении сигнал/шум частотного дискриминатора (тот, который
) [2], [3]. Обозначим ее как
:
Пусть cross дискриминатор реализован по схеме без перекрытия, тогда и
,
или для СКО:
.
Дискриминатор cross проигрывает около 15% по СКО во всем диапазоне с/ш. На рисунке ниже приведен график зависимости СКО эквивалентных шумов представленных ЧД от отношения сигнал/шум
.
convert: no images defined `/tmp/transform_5dfcc5ca5ec4-1.png' @ error/convert.c/ConvertImageCommand/3044.
Далее построены нормированные на крутизну дискриминационные характеристики сравниваемых дискриминаторов. Как и при сравнении дисперсий шума, полагаем .
Из приведенного рисунка следует вывод, что апертура обоих частотных дискриминаторов равна
.
- темп работы дискриминатора. Ранее дискриминаторы сравнивались при условии
, т.е. при одинаковом темпе работы. При анализе "cross" дискриминатора нужно помнить, что
в формулах его характеристик - это время когерентного накопления в корреляторе, а темп работы самого дискриминатора по схеме без перекрытия
.
[править] Листинг модели
Ниже представлен листинг модели, с которой сняты картинки.